搜索
您的当前位置:首页正文

塑性成形原理课后答案

2020-06-02 来源:吉趣旅游网


名师整萼_ 优秀资源

第一章

广20 ■■亠

1-10. 已知一点的应力状态匚j

■… '

5 (0 0

—15 … x 10 MPa ,试求该应力空间中

-10;

;「n和切应力• n为多少?

x -2y 2z =1的斜截面上的正应力

解:若平面方程为 Ax+By+Cz+D=0,则方向余弦为:

m -----------------

寸 A +B +C

2

2

2

..A B C

2

2

2

因此:I 一

1

J1 +(-2) +2

2

2

2

-2 1 (-2)

2

2

3'm 1

2

21 (-2)

2

22

2

Sx = T x I + T xy m + T xz n= 200

Sy=

T xy l + (T y m + T zy

3

1 2 n = 50

3 2 - - 50

2 100

3 3

150 - 350

3 200

Sz =

T xz l + T yz m+ T z n= - 100

二二 SJ Sym Szn

叽—111

100 1 350

------ X —— ---------

3 3 3 3 3 3

9

辿 +锤丫+斜

2

S 二s; S; S;

2

< 3丿

3 「125\"

12500 -

宓「13.4

1-11已知 OXYZ坐标系中,物体内某点的坐标为( 4 , 3 , -12),其应力张量为:

■‘100 ............. ” 40

50

… ,求出主应力,应力偏量及球张量,八面体应力。 —10」

<-20 30

解:J1 - ; x 二 y 二 z =100+50-10=140

. 2 2 2

J2 一 — 二 x;「y 一 yz 一 xz 一 xy =100 X 50+50 X( -10 ) +100 X( -10 )

名师整萼_ 优秀资源

=600

J3

3

= ;「1二2匚3

y;「z

• 2. xy • yz・ xz _ ;「x • yz

2 2 2

— ;「y xz 一二 xy

=-192000

2

二-140 二 600二-192000 =0

d 1=122.2, d 2=31.7, d 3=49.5 d m=140/3=46.7

‘53.

=

..........................................

'46.7

6m =

................ 、

46.7 00

… 46.7 ;

40 <-20

3.3 30

… -56.7 ;

0 < 0

d 8= d m =46.7

1

■8

2 2 2

(二 1 - ;「2)'(匚 2 - ;「3)

2

39.1

-|c2xy, xy - -2y

1 2

•(二 3

3

c

3

1-12设物体内的应力场为 二

=■ yz = ■ zx

- -6xy cx ,-

= °,试求系数 C1 , c2, c3。

解: 由应力平衡方程的:

■>- x .

: ' yx

2 2 2 2

:x :y

--6y 3®x - 3c2y =-2c3xy - 3c2xy = 0

-C3X 0

CT 旳

:x yx 十 _________ y

Jzx

-:z -:z

:x

■y

=0

3c1 -c3 x2 =0

即:一 6 3c2 y2

(1)

(2)

有(1)可知:因为X与y为任意实数且为平方, 因此,

-6-3c2=0 3ci-C3=0

要使 i) 为零,必须使其系数项为零,

(3) (4)

联立 (2)、( 3)和(4)式得: 即: Cl = 1, c2 = — 2 , C3=3

50

1-13.已知受力物体内一点应力张量为:

50 80

I -30

50

电0 -75

主应力和剪应力。

名师整理 优秀资源

111

解:Sx

x

1 + T xy m+ T xz n = 50 50 2 2 .2

50 - - 75

111

1

80 ——:50 40 .一 2

Sy = T xy 1 + (T y m+ T zy n =

2 ,2

75 2 2 <2

= 25-375 2

L

Sz = T xz 1 + T yz m+ T z n= 80 30 2.5 -15 .2

S=111.7 J1=20 J2=16025 J3=-806250

3

2

T -20 T -16025 T +806250=0方程具有三个不相等的实根!

T 1=-138.2, T 2=99.6, T 3=58.6

1-14.在直角坐标系中,已知物体内某点的应力张量为

*10 0 <10

0 -10 0

-10 A 0

10>

z0 50 0、 0 0

0

10>

z-10 -5 -10 A -2 0

0 一

a)W =

MPa

=

50 3

MPa; c)b j =

-5 C10

MPa

1) 画出该点的应力单元体;

2) 求出该点的应力不变量,主应力和主方向、主剪应力、最大剪应力、八面体应力、等效 应力、应力偏张

量及球张量。

解:a)点的应力单元体如下图

2)

10

-10 -10

10

MPa该点的应力不变量:

J1=10 MPa , J 2=200 MPa , J 3=0 MPa ,

T 1=20 MPa,-丄m=0;

2

干<2 n=

2

名师整理 优秀资源

1-10

主应力和主方向:

T 2=-10 MPa, l=m= n=0

2

名师整萼_ 优秀资源

d3=0 MPa, l= 2;m=0; n= -;

2 2

主剪应力 T2=±15 MPa; T3= ±5 MPa ; T2= ±10 MPa 最大剪应力 Tmax=15 MPa 八面体应力 d 8=3.3 MPa ; 等效应力厂-26.45MPa 应力偏张量及球张量。

T=12.47 MPa。

(20 3 Gj

0 -10 40 20 b)点的应力单元体如下图

3 “c c -10 0 —— < 0 0 3丿 10 MPa; a打= 0—0 3 c c 10 0 0 — I 3'10—00 3 MPa;

*0

50 0 '

0 0 10 ?

MPa 该点的应力不变量: Ji=10 MPa , J 2=2500 MPa , J 3=500 MPa ,

50 0 3

主应力和主方向:

d 1=10 MPa, l=m= n=0

丄血

d 2=50 MPa , l= m=二 ;n=0;

2

d 3=-50 MPa,匸 m=_^; n=0。

2

主剪应力 T2=±20 MPa; T3=±50 MPa ; T2= ±30 MPa 最大剪应力 Tmax=30 MPa

八面体应力 d 8=3.3 MPa ; T=41.1 MPa。 等效应力二=87.2 MPa 应力偏张量及球张量。

广10

50

0

#10 0

3 50 0

10 3 0

3 0 0

0 0 10 3

MPa;

0 20 3

MPa; a “ =

10 3 0

k

k

名师整理 优秀资源

C)点的应力单元体如下图

<10 -5 -10\"

Ji=-18 MPa , J 2=33 MPa , J 3=230 MPa ,

-5 —2 0 MPa 该点的应力不变量:

「10 0 —6 ’

主应力和主方向:

er 1 =10 MPa, l=m= n=0

.2=50 MPa,匸 m=_±n=0;

2

e 3=-50 MPa , l= m=

; n=0。 2

主剪应力 T 12=± 20 MPa; T 23= ±5 0 MPa; T 12=± 30 MPa 最大剪应力 T max=30 MPa

八面体应力 e 8=-6MPa ; T=9.7 MPa。 等效应力尸=20.6MPa 应力偏张量及球张量。

■-16 -5 -10 ' -5 <10

-8

0

'-6

C..=

j

0 -6

0、 0

°ij =

• >

0 <0

0 一12」 0 一6」

1-19.平板在x方向均匀拉伸(图1-23 ),在板上每一点 耳=常数,试问ay为多大时,等效 应力为最小?并

求其最小值。

图 1-25

名师整萼_ 优秀资源

解:等效应力:

图 1-23 (题 19)

名师整理 优秀资源

x

-:--y

y

2 2 2 2 2 2 ■\"

)(匚 ・:二)(匚 -:二)6

x

2 F

xy yz xz J

1

I 2 2

弋 * 7)+(C +。)]

2(- -「

M J

2 - d2

y

dy db

2

令y =(•丁 「•丁) -(二) (二),要使等效应力最小,必须使y值最小,两边微分得:

2

2;- 0

x

y

等效应力最小值:

二 1 Wx -「)2 (二 )2 (G)T

y

1-

20.在平面塑性变形条件下,塑性区一点在与 d

K,如图1-24所示。试画出该点的应力莫尔圆,

x

轴交成B角的一个平面上,其正应力为

(b V 0),切应力为T,且为最大切应力

并求出在y方向上的正应力 d y及切应力T xy,且将d y、T yz及d x、T xy所在平面标注 在应力莫尔圆上。

4

图 1-24 (题 20)

x轴交成B角的一个平面上的切应力为为最大切应力 K,因

又由于切应力方向为逆时针, 因此切应力为负,其位置为应

图 1-25

名师整萼_ 优秀资源

1-25所示。

二 y - ; - Ksin2二

xy

= Kcos2^

解:由题意得知塑性区一点在与 此可以判断该平面为主剪平面, 力莫尔圆的最下方,该点的应力莫尔圆如图

名师整理 优秀资源

第二章

2 2 2

2-9•设;x = a(x - 2y ); ;y = bx ;肖=axy,其中a、b为常数,试问上述应变场

在什么情况下成立?

解:对;x

=a(x2-2y2

)求y的2次偏导,即:

(1)

2

对' =bX求x的2次偏导,即:

-2 :;y

厂=2b

.x

对xy二axy求x和y的偏导,即:

a

:x :y

带(1)、(2)和(3)入变形协调方程(4),得:

1

(4a 2b) = a

即:a =-b时上述应变场成立。

2-10试判断下列应变场是否存在?

(1) ;x =xy2

, y =x2y, ;z =xy, xy =0,

y^

1 z2 y, xz=lx2 y2

2 2

(2)

x

- x y , y

, ;z = 0, xy

- 2xy,

yz 二 xz = 0

(1)解:对;x = xy2、y = x2y和;z =xy分别求x、y或z的2次偏导,对 xy二0、

1

1

yz

z2

y和xz x2

y2

分别求x、y和z的2次偏导,则:

2

x

(2)

(4)

(3)

名师整萼_ 优秀资源

2

2

= 2x,

(a)

-2 -2

y

=2y,

-'z

(b)

-2

名师整萼_ 优秀资源

J =0,

2

—z

「=0 ;

■2 yz

2

=0,

:x:y

(c)

=0

(d)

将(a)、(b)、(。)和(d)代入变形协调方程(e):

:x:z

1 (:: ;x . ¥ ;y 严 xy 2(~lyr 〒八

2

乂y

1广;y 2(h

-2

-:2 yz

-2)

:y:z

.z:x

(e)

y

贝U( e)第一式不等,即:(2x - 2y) = 0 这说明应变场不存在。

2 2 2

1

(2)对;x =x y > ;y = y和;z = 0分别求x、y或z的2次偏导,对 xy二2xy和

yz = xz =°分别求x、y和z的2次偏导,

-2

2

=0 ;

(a)

■y

=0,

:z

y r 2

-2

-0 ;

(b)

.x

-2

「z

-0,

-2

-0 ;

(c)

x y

c2y

r\\

2

2

xz

1

贝U:

d z c z c /

()

2

廿

— - 2,说明应变场不存在。

— ( ~ --------------------- — ) = 1 -一

: x ,

2 : y x

2- 11 .设物体中任一点的位移分量为

u =10 10” 0.1 10^xy 0.05 10”z

v =5 10^-0.05 10“x 0.1 10“yz

名师整萼_ 优秀资源

-3 _3

w =10 10 -0.1 10 xyz

求点A ( 0.5,- 1 , 0)的应变分量、应变球张量,主应变,八面体应变、等效应变。

名师整萼_ 优秀资源

解:

-U 3

0.1 10_y _x

cv

= 0.1 10~z

CO

-0.1 10 xy

3

■z

yx

xy

冷 E m\".05 10\" O.025 佼

1yz

匚 一 =0.05 10‘y-0.05 10”xz

2 ;z :y

V

丄( U) = 0.025 10- -0.05 10Jyz 2 : x

:z

将点A的x=0.5, y= — 1, z=0代入上式,得点 A的应变分量

『-0.仆10“ 0.025 汉 10“ -0.05X0-3 0.05

卫.025沢10山

-0.05 10-3

10‘」

对于点A :

mA

z^-6 10^

5

5

10

ij mA

■5 10^

3

Ii

;z =-0.05 10 3

I2

= (;x ;y ,y ;z •

;z;x

)-(

2 xy

yz

2

zx)

=-8.125 10“13

* =2.5 10- ;3 - ;2 -12 ; - 13 =0

即:3 -1.5 10-4「-8.125 10-10 ;

2.5 10^=0

、=8.3 10-5, 2 =2.9 10-5,

3 =-1.°4 10,

名师整理 优秀资源

1 , \\ 1 \" 4

=3代\"+小-孑10一

1 •

8

°

Q

Q 2

yz

2

zx

2

一一 3 (;x— ;y) ( ;y 一 ;z)(迄一、)6( xy

3 = 7.73 10-

\"=2 -1.09 10-

8

2- 12.物体中一点应变状态为:

>x =0.001, z y =0.005, >z = -0.0001, xy = 0.0008 , yz = 0.0006,

怎=-0.0004,试求主应变。

解:由题可知:

广 10 8 z= 8

-4、

-4

50 6 X104 -1」

;z

<4 6

11

x

;y

=5.9 10 乂

xy

I2

=(;x ;y ;y ;z ;z ;x)-(

2 yz2 zx'

) =3.24 10\"

-9

I3 =T.98 10

即:;3-5.9 10-3;2-3.24 10-6; 1.98 10-10=0

=6.4 10, 二-8.3 10, 二 3.7 10

2-13 .已知平面应变状态下,变形体某点的位移函数为Ux二丄•丄 x •丄y,

4

200

40 11 1 . Uy

方向。 解:

解方程得主应变:

3 3 3

=5 • 25X -200 y,试求该点的应变分量

旦=0.015 x

;x;yxy,并求出主应变;1;2的大小与

, , ,

11

名师整理 优秀资源

=-0.005 1 cu

xy

yx

:u

(x ■

= 1.0 10

)=0.0325

11

名师整萼_ 优秀资源

12 二:x ;y - : =-1.13125 10-3

Is = 0

即:;3 -1.0 10-2 ;2-1.13125 10-3 ; =0 解方程得主应变:

二-0.039, 2 = 0.029, s =0

z32.5 0、 〔15

由:

32.5 < 0

5 0 =39 2

0 \"0-3 0丿

[ 1 i

■1

*39 0 <0

0 0'

29 0 x 10-3 得:

m = n_

0 0

151 + 1 2

. 解这个方程得:

m1=0.5575, m2=5.16。 由于 m2=5.16 > 1,与方向余弦规定不符,因此,

mi=0.5575才是正确解。由此得:1=0.689。

即 & 1=-0.039 时,方向余弦为:1=0.689 , m=0.5575 , n=0。 同理可求:& 2=0.029 时,方向余弦为:1=0.8025 , m=0.5966, n=0。

名师整萼_ 优秀资源

第三章

3-6.某理想塑性材料在平面应力状态下的各应力分量为

ax=75 , oy=15 , oz=0 , Ty=15 (应力

单位为MPa,若该应力状态足以产生屈服,试问该材料的屈服应力是多少? 解:由由密席斯屈服准则:

a =& -CT 丫+何 _a f + (a -cr \\

2 + T 2 + T 2

s

x

y •

y

z ■

■ z

x

xy

yz

xz

得该材料的屈服应力为:

% =£(75—15$ +(15—0 j +(0 —75$ +6(152 +0 + 0》= 73.5MPa

3- 7.试证明密席斯屈服准则可用主应力偏量表达为:

■^(时+时+愛)=耳 .2

证明:由密席斯屈服准则:

^(6 -02 f +(°_3 -0'2 f +(f =U羽's

(1)

即:J(W Y +(— 2 +何

3 2 -吓2 -吓 3 〜 而:

=一拧 V - -3 -;干2 -〒 3 -6 打 所以:(1)式与(2)式相等。

(2)

名师整萼_ 优秀资源

3- 8 •试分别用密席斯和屈雷斯加屈服准则判断下列应力状态是否存在?如存在,应力处于 弹性还是塑性状

(材料为理想塑性材料)

0 0

0 0

0 ' 0

'-56 b)6j =

0 1 0

0 -5兀 0

0 x 0

a)W =

,

<0

J」 0 一4°\\」 态?

S2J 0

0-^s

0 0 、

0 0•何s

< 0

0

0 ,

0

d)Sj =

0

'、、0

0 0

0 —

名师整萼_ 优秀资源

\"s

e) ◎ ij —

0

0

-0.5ci s

0

0 、 0

-匸5^ s J

广0

,

D d ij =

0.45b 0、

s

0.45J < 0

0 0

0

°」

<0

解:a)由屈雷斯加屈服准则:

闵-C3=bs得:c&-0= Os,存在。应力处于塑性状态。

]亠山'3 -

]亠\"T 2 = -s。存在。应力处

由密席斯屈服准则 F = 1尹「-

于塑性状态。

b)由屈雷斯加屈服准则:

O-O=O得:-4 O+5 O=os,存在。应力处于塑性状态。

由密席斯屈服准则

-2

.1

2

亠 I: i -

= ±J(0.5J —0 f +(0+0.6兀 f +(-0.6— —0.5J f

二-0.96;「s 6

存在。应力处于弹性状态。

e)由屈雷斯加屈服准则:

O- O= O得:-0.5 O+1.5 O= O= O,存在,应力处于塑性状态。

由密席斯屈服准则

=专喩-6 +0.5— f +(-0.5— +1.5J f +(-1.5J + j f 二、0.75;「 二

s

s

存在。应力处于弹性状态。

2 2 2

、;( —5虽 +5企)+(-4耳 +5J ) +(-九 +4J )

=■- s

存在。应力处于塑性状态。

c) 由屈雷斯加屈服准则:

O-O=O得:1.2 cs-0=1.2 cs>o,不存在。 由密席斯屈服准则

—犬討W -6 $ +S -6 2 +Qi -6 丫

=亠 J(1.2名师整萼_ 优秀资源

f)由屈雷斯加屈服准则:

Tax= ( 01- 03)/2= 0/2 得:Tmax =0.45 oV 0,存在,应力处于弹性状

^态。

由密席斯屈服准则

— :1 2 2 2 222

b —by) +(<^ —^z) +(^Z—<^x) +6(jy +lyz + Jx )]

= \\'3 疋(0.45bsf =0.78crs 佃s

存在。应力处于弹性状态。

「75 -15 0、

3-9已知开始塑性变形时点的应力状态为

-15 15

试求: 主应力大小;

(1) 作为平面应力问题处理时的最大切应力和单轴向屈服应力;

(2) 作为空间应力状态处理时按屈雷斯加和米塞斯准则计算的单轴向屈服应力。

(3)

解:由于点的应力状态为平面应力状态,由

'-1,2

-1,2

75 15

2

152 3

主应力为:

01=78.54, C2=11.46, O3=0

最大切应力: Tmax=33.54

2

单轴向屈服应力为:匚=2

2

作为空间应力状态处理时按屈雷斯加准则计算s 1 J

+ jy =67.08

: 单轴向屈服应力:o= o— 03=78.54; 作为空间应力状态处理时按米塞斯准则计算的单轴向屈服应力: 二[(J 一6)2 (F 一匚)2 (6 一6)2 6(、y2

yz

2 zx2)]

2

[(75 -15)2 (15 -0)2 (0 - 75)2 6(152 0 0)]

3 -73.48

o=73.48

2

+巧xy得主应

名师整萼_ 优秀资源

第四章

4-5.有一金属块,在 x方向作用有150MPa的压应力。在 Y方向作用有150MPa的压应力,

3

z方向作用有200MPa的压应力。试求金属块的单位体积变化率 (设E=207 X 10 MPa ,尸0.3)。

解:各方向应力为: 单位体积变化率为:

d x= d y=-150MPa , d z=-200MPa,则球应力为:1 - 2、

---- CT

1-2 0.3

3\"

166.7

■4

即:

4-6 .已知一点的应力状态如图

£ m =-3.22 X 10

207 10

4-16所示,试写出其应力偏量并画出主应变简图。

图 4-16 (题 15)

E

解:设d > d> d,则: 平均应力:

3 '4

应力偏量为:

3

0

0 \"

0-10

<0 0

- 3丿

由列维一米赛斯增量理论 d飞-[ d •得:

d、- ; d,- 4d-

d ;2 = '2 d,- -d' d ;3 = ;丁 '3 d = -3d ■ 主应变简图如图示:

名师整理 优秀资源

(%

4-

7.两端封闭的细长薄壁管平均直径为 r,平均壁厚为I,承受内

压力p而产生塑性变形,

管材各向同性,试计算切向、轴向及径向应变增量比及应变比。 解:

4- 8 .求出下列两种情况下塑性应变增量的比:

① 单向应力状态::二[-s

② 纯剪力应力状态:.二二/、3

s

s

3

设 5 > 02> <3,则:

①解: a 二

m

7

+ 、—口 s,因此,应力偏量为

3

3

s

3 0 0

0

a

s

0 0

3 0

k

3

由列维一米赛斯增量理论

d刁-;「'耳d ■得:

d ;2

dm -才

塑性应变增量的比为:

d' 2b 3—

二-2,同理= -2,

--d

3

②解:已知纯剪力应力状态: ・s二二s/' 3

名师整理 优秀资源

应力张量为:

3

名师整理

优秀资源

.3 0

.3

:二 s

3 0 d ;耳

j d ■得

由列维一米赛斯增量理论 =.

:

d Xy d

=—

3

yz

d ■ 3 —s d ■

d xz

中3

塑性应变增量的比为:

1

名师整理 优秀资源

xyxz

d

yz

dY

yz

1

名师整萼_ 优秀资源

第六章

1. 20#钢圆柱毛坯,原始尺寸为 ①50x 50mm,室温下压缩至高度 h=25mm,设 接触表面摩擦

切应力T =0.2Y,已知丫=746 & 0.20MPa,试求所需变形力 P和单位 流动压力p。 解:圆柱压缩时体积不变,则当 h=25mm时,

1

50 l 25 2 mm °

R

Y 4 x 25

50

= 0.5

H - h 50 - 25 -

max,

T =0.2 丫 =0.2x 746 & 0.20=129.9MPa 当 T = T T max=K=129.9MPa

由于圆柱压缩是轴对称问题,宜采用柱座标。由题意得圆柱界面上的摩擦为 T =0.2Y,

Y=746 °'20MPa,设三个坐标方向的正应力 or、闪和龟视为主应力,且 与对称轴z无关。某

瞬间圆柱单元体上的应力如图所示,单元体沿径向的静力平 衡方程为:

(5 + 2碍)(尸+於护曲-5用和+2T asrd9dr-2勿肛m(弓)必二0

令sin(d02)〜d 02,并忽略二次微分项,则得

dr r h

由于轴对称条件,0=(0°此时平衡方程简化为

名师整理 优秀资源

dr

根据米赛斯屈服条件,

可得近似表达式为

1-1

d;

「 =de

r

代入式 (1-1),得

CJ

dr

因此

259.8

Ge

1-2

边界条件:当r二R时,匚r =0。由近似屈服条件知,此时的7^ 2K,代入方程 式(1-2),可得

竺&

2K 二 Ce

1

h

-259.8

C「2Ke

代入式(1-2),得

h

-259.8(R j)

—2Ke

h

1-3

因为:h=25,R= 25 2,K=129.9MPa

二 259.8e

10.36(25 2 -r)

所需变形力P为:

-0

zds

R 10.36(25 2 -r)

2 rdr

名师整理 优秀资源

o

259.8 e

二 7.5 105

压板上的平均单位压力用

p表示,则

-0

名师整萼_ 优秀资源

_ P

P 2 = 191.12 MPa

-R

2

2.模内压缩铝块,某瞬间锤头压力为 500kN,坯料尺寸为50x 50X100mm3,如 果工具润滑良

好,并将槽壁视为刚体,试计算每侧槽壁所受的压力(如图6-11) o

图 6-11 (题 2)

解:从变形区内取一单元体作受力分析。单元体的高度为平板间的高度 h,宽度 为dx,长度为一个单位。假定是主应力且均匀分布,当沿 x轴坐标有dx的变量 是,氐相应的变化量就可用微分d氐来表示。y方向上的压应力用oy表示。摩擦 力f的方向同金属质点流动方向相反,设每侧槽壁所受的压力 p,如图所示。

IZ

列出单元体的微分平衡方程:

jh -(J dj)h —2f;「ydx=0 h d二x 2f 二 dx = 0

y

2-1

屈服条件为:二y - ;「x = 2k 因此,d;「x =d;「y

将此式代入式(2-1)整理得

旦「2芒 ;「y

h

2 f

积分后得:In二y M-dx C h

2 f

;「 =Ge

y

h

x

2-2

根据应力边界条件确定积分常数。 应力边界条件为:当x=b/2时,o=po 由屈服条件式,得▽ y xd/2 = 2k + p

名师整萼_ 优秀资源

代入式(2-2)求系数Ci得:

2f b

Ci =

2k p eT

2

因此:匚

y

二 2k

b

2

pe\"乂

h2

2f b

h 2

[二 yhdx = 0 2k p ehdx

hl

已知锤头压力P为500kN,代入上式即可求得每侧槽壁所受的压力

3.圆柱体周围作用有均布压应力,如图

p。

6-12。用主应力求镦出力P和单位流动

压力。,设T =mk。

r / a ■ ■ - 、S\\ H 衣二 X \\ 7 b -------------------------- %

图 6-12 (题 3)

解:圆柱压缩为轴对称冋题,米用柱座标。设二个坐标方向的正应力 径向的静力平衡方程为:

(丐 + 込)(尸 + 曲闷® - A 孑卩 +

sin(—= 0

(T、

和oz视为主应力,且与对称轴Z无关。某瞬间圆柱单元体上的应力如图所示,单 元体沿

令sin(d02)〜d 02,并忽略二次微分项,则得

名师整萼_ 优秀资源

dr r h

名师整萼_ 优秀资源

由于轴对称条件,

(F=冈。 此时平衡方程简化

h dr

根据米赛斯屈服条件,可得近似表达式为

d;

「r

=d;「z

代入式 (3-1),得

2mk h dr二

z

因此

In ;「z

2mk r

边界条件:当r =R时, or= o0。由近似屈服条件知,此时的

程式(3-2),可得

2mk - R h

R C2 mk—i 二 2K

h

代入式(3-2),得

2m4

二 z F2K 二。e h

所需变形力P为:

压板上的平均单位压力用p表示,则

- P

PF

5试用主应力法求解板料拉深某瞬间凸缘变形区的应力分布。硬化)

3-1

3-2

-Z

=2K + qo,代入方

3-3

(不考虑材料加

名师整萼_ 优秀资源

图 6-14 (题 5)

解:板料拉深某瞬间凸缘变形区受力如图

(T6-14,为平面应力状态,设正应力

、 丙为主应力,单元体沿径向的静力平衡方程为:

「r dr hd)- ;「rrhd v - 2一 :, sin 号 hd—0 令sin(d 02)~d 02,并忽略二次微

分项,则得

5-1

dr r

将屈服条件or-斫2K代入上式得

j - -2K ln r C

积分常数C根据凸缘的外缘处(r=R)的二r=0边界条件,得积分常数 C =2KIn R

名师整萼_ 优秀资源

凸缘变形区的应力分布为:

一 2Kln R/r

5-2

名师整萼_ 优秀资源

第七章

7-10 解:已知 a族是直线族,B族为一族同心圆,c点的平均应力为:(T mc=-

90MPa ,最大切应力为 K=60MPa。C点应力为: -xc =;:me -2ksin2 c 一90 - 60 30MPa

sin

2 \"mC 2ksin2 C

■xy 二 K cos 2 C = 0

由于B点在aa族是直线族,因此,所以B点应力状态和C点相同。

族上, B 族上,B族为一族同心圆,因此由沿线性质得: -mc -;「md = —2k(- d)

即: \"-'md Kmc 2k( - d)

7。2k -- -£0 - 20二 D点应力为:

=:md -xd

-2ksin2 c -90 - 20二-60 sin r 5兀、

-——i= -122.8MPa Cyd =:;md

2ksin2 C

-90-20「: 60sin

l 6丿 * 5兀1

伍卜51.9

——| = —182.8MPa xy

=K cos2^C =60 ・cos -

6

< 6丿

D点的应力莫尔圆

D点在

名师整萼_ 优秀资源

O

图 7-2z

7-11试用滑移线法求光滑平冲头压入两边为斜面的半无限高坯料时的极限载荷 P(图7-36)。设冲头宽度为2b,长为I,且l»2b。 解:(1)确定滑移线场。

设冲头的表面压力为p且均匀分布,由于平冲头光滑,故可认为冲头与坯料 之间无摩擦,因此AO区域可看成是光滑(无摩擦)接触表面,滑移线场和确定 a B方向如图教材中图7-100 AB区域表面不受力,可看成是自由表面,但受A0D 区域金属流动影响,因此为不受力自由表面的第 2种情况,滑移线场和确定 a B

方向如图如图7-9b所示,在均匀滑移线场 ADO和ABC之间必然存在简单滑移 线场,由此确定出光滑平冲头压入两边为斜面的半无限高坯料时滑移线场,如图

7-3zo

(2)求平均单位压力。

取一条a线BCDO进行分析,由于B点在自由表面上,故其单元体只有一个 压应力,

由此可判断出 5c=0,根据屈服准则,5 — 03=2k,因此,03c= — 2ko而平 均应力 cmc=( 5c+ o3c)/2,可得二 二-k 0

mB

已知O点在光滑接触表面上,因此「。二-二/4,其单元体上承受冲头压力和 金属向两边流动的挤压力,即存在

(3 )求角度。

5,5作用,均为压应力,且C3=5=-p,其绝

对值应大于5,根据屈服准则可得 5=5=-p+2k,平均应力5no=-p+k

名师整萼_ 优秀资源

对a线BCDO进行分析。接触面AO上的0点的夹角oo为一d4,在自由表 面AB上的B点的夹角OB为n4+Y

贝y A o= 00- OB=OD- oc= 一 n4 一 ( n4+ Y = 一 n2 一 丫 (4)求极限载荷 由汉盖应力方程式

f

=2k( o - B)=2k :,

得:- p k -(-k)二 2k(-?-)二-k 二

即:p = k 二川■

极限载荷P为:P =2blp =2blk —

7-13图7-37为一中心扇形场,圆弧是a线,径向直线是B线,若AB线上om=-k, 试求AC线上omo

解:已知直线AB是B线,其上om=-k,故B点的onB=-k, AC线是B线,但 也是直线,直线上的 on相同,求出C点的on,即得到AC线上on o C点的on 可通过圆弧BC求,已知圆弧BC是a线,由汉盖应力方程式

f

=2k( C 一 B)=2k : •

即:貯mC—(—k)=2k ■ -- I

< 6丿

% = _k , +1 [

i 3丿

即AC线上on为:

7-14具有尖角2 丫的楔体,图7-38在外力P作用下插入协调角度的V型缺口, 试按1)

楔体与V型缺口完全光滑和2)楔体与V型缺口完全粗糙做出滑移场, 求出极限载荷。

名师整萼_ 优秀资源

第一种情况:楔体与

解:(1)确定滑移线场。

设冲头的表面压力为p且均匀分布,由于冲头光滑,故可认为冲头与坯料之 间无摩擦,因此AB区域可看成是无摩擦接触表面,滑移线场和确定a B方向如 图教材中图7-10。AE区域表面不受力,可看成是自由表面,但受 ABC区域金属 流动影响,因此为不受力自由表面的第二种情况,滑移线场和确定 a、B方向如 图如图7-9b所示,在均匀滑移线场ABC和ADE之间必然存在简单滑移线场,由 此确定出具有尖角2丫的楔体在外力P作用下插入完全光滑的V型缺口时的滑移 线场,如图7-4z。

(2)求平均单位压力和角度。

AB面是光滑接触表面上,因此• ’B二二/4-吋。由于垂直于AB面的压应力大

于平行于AB面的压应力,因此,可以确定平行于 AB面的压应力为6,垂直于 AB面的压应力为 6=-p,根据屈服准则,6 — 6=2k,因此,oi=2k+o3=2k-p,而 平均应力 6nB=( 6+ 6)/2,可得 二 k - P。

mB

AE面是自由表面上,故其只有一个压应力,由此可判断出 6E=0,根据屈服

mE

准则,6 — 6=2k,因此,6E=— 2k。而平均应力 6nE=( 6E+ 6E)/2,可得匚= _k。

(3)求极限载荷

已知BCDE线为a线,由汉盖应力方程式

mB

mE

zg

丄 兀* 兀 *

得:-p k -(-k) =2k(—- --) - -2k

4

即:p = 2k 1

4

极限载荷 P为:P=2blp/sin =4blk1 /sin

名师整萼_ 优秀资源

解:(1)确定滑移线场。

设冲头的表面压力为p且均匀分布,由于楔体与 V型缺口完全粗糙,故可认 为冲头下坯料为变形刚性区。AE区域表面不受力,可看成是自由表面,但受ABC 区域金属流动影响,因此为不受力自由表面的第二种情况,滑移线场和确定

丫的楔体在外力P作用下插入完全粗糙的V型缺口时的滑移线场,如图 7-5z。

(2)求平均单位压力和角度。

AE面是自由表面上,故其只有一个压应力,由此可判断出

OIE=0,根据屈服

a B

方向如图如图7-9b所示,三角形ABC和ADE存在简单滑移线场,由此确定出具 有尖角2

准则,01 — O3=2k,因此,C3E=— 2k。而平均应力 omE=( 01E+ 03E)/2,可得匚 mE = _ k。

E =

二 /4,

三角形ABC是难变形区,该区内的金属受到强烈的等值三相压应力, AC面 是摩擦接触表面上,垂直于 AB面的压应力大于平行于 AB面的压应力作用,不 发生塑性变形,好像是冲头下面的刚性金属楔,成为冲头的一个补充部分。 CD 为a线,「c二二/4 - 。由于垂直于CD面的压应力大于平行于 CD面的压应力,

因此,可以确定平行于CD面的压应力为0,垂直于CD面的压应力为o二p,根 据屈服准则,01 — o3=2k,因此,o=2k+ o=2k-p,而平均应力 omc=( o1c+ c3c)/2,可 得 Omc= k-p o

(3)求极限载荷

已知CDE线为a线,由汉盖应力方程式

(j -a

= 2k(二 - E)

J[

JE

得:k _p 十k) =2k( ) - -2k

即:p = 2k 1

极限载荷 P为:P=2blp/sin1 =4blk1 /sin

名师整萼_ _优秀资源

7-15何谓滑移线?用滑移线法求解宽度为 2b的窄长平面冲头压入半无限体的 单位流动压力p。材料为理想刚塑性体,屈服剪应力为 K;参见图7-39。

解:(1)确定滑移线场。

设冲头的表面压力为p且均匀分布,设冲头光滑,故可认为冲头与坯料之间 无摩擦,因此AB区域可看成是无摩擦接触表面, 滑移线场和确定a B方向如图 教材中图7-10。BE区域表面不受力,可看成是自由表面,但受 ABC区域金属流 动影响,因此为不受力自由表面的第二种情况,滑移线场和确定 a B方向如图 如图7-9b所示,在均匀滑移线场ABC和BDE之间必然存在简单滑移线场,由此 确定出宽度为2b的窄长平面冲头压入半无限体的滑移线场,如图

7-6z。

(2)求平均单位压力和角度。

AB面是光滑接触表面上,因此A二-理/4。由于垂直于AB面的压应力大于 平行于AB

面的压应力,因此,可以确定平行于AB面的压应力为6,垂直于AB 面的压应力为o3=-p,根据屈服准则,(JI— o3=2k,因此,ar=2k+(s=2k-p,而平均 应力 crnmA=( 6 + 6)/2,可得匚

mA

=k-p。

BE面是自由表面上,即只有一个压应力,由此可判断出

6E=0,根据屈服准

则,6— 6=2k,因此,6E= — 2k。而平均应力 omE=( 6E+ 6E)/2,可得 omE=-k。

■ E

二二 /4。

(3)求极限载荷

已知ACDE线为a线,由汉盖应力方程式

二 mA

=2k(\\」’E)

得:k _p _(_k) =2k(——--)

4

即: p =2k 1

4

< 2丿

极限载荷 P 为:p =2blp =4blk 1 + — i

l 2丿

名师整理 优秀资源

第八章

8-7模壁光滑平面正挤压的刚性块变形模式如图 8-19所示。试分别计算其上限载

图 8—19 (题 8)

解:(1)模壁光滑平面正挤压的刚性块变形模式如图 8-19所示的第一个图

四个刚性区A、B、C和D相对滑动,刚性区0为死区,其速度图如图8-1z 若冲头的宽度为2b,平均极限压力为P,根据功率平衡原理,可得:

pVoH 二 AB VAB AC VAC BC VBC CD V k

CD

(厂丘 ,一 42 「一 42 '

=J2 江 V° + 2V° + J2 況

< 2 2 2 }

V°+J2 江 Vo k

= 5V°k

P= 2.5k

⑵模壁光滑平面正挤压的刚性块变形模式如图 8-19所示的第2个图。

D

pVoH 二 AB VAB

sin8

2 仪 sin 8

2 2 sin 8 2Vo

四个刚性区A、B、C和D相对滑动,刚性区0为死区,其速度图如图8-2z 若冲头的宽度为2b,平均极限压力为P,根据功率平衡原理,可得:

8

名师整萼_ 优秀资源

f— 兀

=2<2 sin— 2Vo '、、 8

12 2sin2

名师整萼_ 优秀资源

p~ 1.98k

(3))模壁光滑平面正挤压的刚性块变形模式如图 8-19所示的第3个图。

四个刚性区A、B、C和D相对滑动,刚性区0为死区,其速度图如图8-3z。

若冲头的宽度为2b,平均极限压力为P,根据功率平衡原理,可得:

pVoH 二 AB VAB AD V

=2V。 -4Vok

2 2V。k

P= 2k

显然第(2)种方法的答案最接近实际结果,因此第(2)种方法最优。

8-8试绘出图8-20所示板条平面应变拉拔时的速端图,并标明沿各速度不连续线 的速度不

连续量的位置,及计算出刚性三角形块△ BCD的速度表达式。

解:五个刚性区 ABC、CBD、CDE和DE线右边和AB线左边相对滑动, 其速度图如图

8-4z。

根据功率平衡原理,可得:

名师整萼_ 优秀资源

Vo

= VAB

sin ——-■ sin :

V°sin : sin :-:-

名师整萼_ 优秀资源

V VAB

,

sin「 ' i sin

Vo sin : sin :川 sin\"; :; sin

VBCD 二 VO

V =V°

Vo sin : sin : sin -: sin sin。sin(B + 了 广

=V。1 —

sin(P -a )sin光丿

p。

8-10在如图8-22所示的正挤压过程中,假设模子面是光滑的,刚性块为图中的A、 B、C,

其界面为速度间断面,试用上限法求单位变形力

根据功率平衡原理,可得

pVoH

h H

sin cos -: -HVo

1十

o

sin - cos -

cos-

k

isin ® cos® sin 日 cos日

2 o — 两边同除以HV。,得单位变形力p:: I -单建壬 f 卩h 匚 J 一 K -- 1 --- pe

名师整萼_ 优秀资源

图 8-22 (题 11)

解:三个刚性区A、B、C相对滑动,其速度图如图8-5z

名师整理 优秀资源

----------- + ------------- sin® cos® sin 日 cos日丿

■ tan)

8-11挤压给定的分区如图8-23所示,试给出相应的速度图,并用上限法求解作用 在冲头上的平均压力的近似值,设材料真实应力为 (7,不考虑加工硬化

图 8-23 (题 12)

解:三个刚性区A、B、D相对滑动,刚性区0为死区,其速度图如图8-6z。

根据功率平衡原理,可得

PV,H = (ABV^+BDV^.k BD = J\" P

VED = HJ/F +

gin 二 sin(7r- —— 0)

4

4

7T

H-h-l

4 fi(h - Z)

AB与OB间的夹角3 --- ----- arcmin _________________________

- (H -h-7)3

(H 5

r>

M

: ﹁*£

.aCLe

H5

一N p W工醫匕

丄︱I

—UlinE ﹂—

十 u仁 I

H -¥弓 + €=i” ﹁ M

p■3

u

I

+

ls

£z

I

(

nJ

K+ HP *—﹂H﹄Yo—M

2 2 2

-40 -(-20) -30

1

斜截面上的全应力、

1

弦为l=m= — , n=——的

2

2 =1.336 \"s

不存在。

d) 由屈雷斯加屈服准则:

V2

O-

O=O得:0.5 O+0.6 O =1.1 O> O,不

存在。 由密席斯屈服准则

因篇幅问题不能全部显示,请点此查看更多更全内容

Top