二次根式的定义教学反思
这节课主要是先让学生借助以前算术平方根的知识来认识二次根式,重点是由二次根式引出相关代数式有意义的问题。
在教学中,我是先简单复习一下有关算术平方根的知识,但过了一个暑假回来,学生大局部都遗忘了,所以比预想中花的时间多了一点,在三个实际问题的学习中,由于做好了铺垫,学生开始进入状态,也就比拟快能得出结果,关键是让学生从三个结果中找出共同点,在教学中,我是先让学生自己思考,然后提问了几个同学,再让其他学生进展补充,集中他们的答复进展归纳,在这个过程中,我觉得很好的调动了学生的参与性,也培养了他们勇于观察和提出自己看法的能力。这样的方式我觉得以后教学中我要多点采用。
代数式有意义的问题是本节的'重点,也是难点,学生在学习中能理解二次根式和分式有意义时要满足什么,但综合在一起的代数式对学生来说就是个难点,在练习中,发现学生比拟容易犯的错误是:
1、容易混淆什么时候大于等于0,什么时候不等于0,什么时候只是大于0。
2、解不等式的时候最后一步常出现错误。
3、在最后表达结果的时候出现错误。所以在分层训练时,我重点再次挑选了B组的两个题目进展分析和强调,之后再进展练习,作业的布置我也有针对性挑选了相应的题目。但是这个难点的突破对于中下生仍需要在今后的学习中不断重现,比方利用课前小测的
方式。在课堂分层训练卷中,从学生的反应情况,我发现B组题量稍微偏少,应多加强点针对知识点的训练。 基于上述感受,我对本节教学有如下建议:
1、在复习回忆平方根,算术平方根定义时,应结合简单的数来举例子,毕竟学生经过一个长的暑假回来,以前所学遗忘太多,做好充分铺垫之后,学生进入状态才可以较好承受本节内容。 2、在引入二次根式的定义的过程设计中,应结合几个实际问题,让学生根据问题的答案找出它们的共同点,关键是让学生在经历思考,讨论后明确二次根式的定义,尤其是理解被开方数是非负数的要求。
3、在解决代数式有意义问题中,应先让学生明确二次根式与分式有意义分别要满足的条件,再进展综合训练。
因篇幅问题不能全部显示,请点此查看更多更全内容